Whole‐genome sequencing in prenatally detected congenital malformations: prospective cohort study in clinical setting

Author:

Westenius E.12ORCID,Conner P.34,Pettersson M.12,Sahlin E.12,Papadogiannakis N.56,Lindstrand A.12,Iwarsson E.12ORCID

Affiliation:

1. Department of Molecular Medicine and Surgery Karolinska Institutet Stockholm Sweden

2. Department of Clinical Genetics and Genomics Karolinska University Hospital Stockholm Sweden

3. Department of Women's and Children's Health Karolinska Institutet Stockholm Sweden

4. Center for Fetal Medicine Karolinska University Hospital Stockholm Sweden

5. Department of Laboratory Medicine Karolinska Institutet Stockholm Sweden

6. Department of Pathology Karolinska University Hospital Stockholm Sweden

Abstract

ABSTRACTObjectiveTo investigate the diagnostic yield of trio whole‐genome sequencing (WGS) in fetuses with various congenital malformations referred to a tertiary center for prenatal diagnosis.MethodsIn this prospective study, 50 pregnancies with different congenital malformations, negative for trisomies and causative copy‐number variants, were analyzed further with fetal–parental trio WGS analysis. Parents were eligible for inclusion if they accepted further investigation following the detection of isolated or multiple malformations on prenatal ultrasound. Cases with isolated increased nuchal translucency, gamete donation or multiple pregnancy were excluded. WGS with the Illumina Inc. 30× polymerase‐chain‐reaction‐free short‐read sequencing included analysis of single‐nucleotide variants, insertions and deletions, structural variants, short tandem repeats and copy‐number identification of SMN1 and SMN2 genes.ResultsA molecular diagnosis was achieved in 13/50 (26%) cases. Causative sequence variants were identified in 12 genes: FGFR3 (n = 2), ACTA1 (n = 1), CDH2 (n = 1), COL1A2 (n = 1), DHCR7 (n = 1), EYA1 (n = 1), FBXO11 (n = 1), FRAS1 (n = 1), L1CAM (n = 1), OFD1 (n = 1), PDHA1 (n = 1) and SOX9 (n = 1). The phenotypes of the cases were divided into different groups, with the following diagnostic yields: skeletal malformation (4/9 (44%)), multisystem malformation (3/7 (43%)), central nervous system malformation (5/15 (33%)) and thoracic malformation (1/10 (10%)). Additionally, two cases carried variants that were considered potentially clinically relevant, even though they were assessed as variants of uncertain significance, according to the guidelines provided by the American College of Medical Genetics and Genomics. Overall, we identified a causative or potentially clinically relevant variant in 15/50 (30%) cases.ConclusionsWe demonstrate a diagnostic yield of 26% with clinical WGS in prenatally detected congenital malformations. This study emphasizes the benefits that WGS can bring to the diagnosis of fetal structural anomalies. It is important to note that causative chromosomal aberrations were excluded from our cohort before WGS. As chromosomal aberrations are a well‐known cause of prenatally detected congenital malformations, future studies using WGS as a primary diagnostic test, including assessment of chromosomal aberrations, may show that the detection rate exceeds the diagnostic yield of this study. WGS can add clinically relevant information, explaining the underlying cause of the fetal anomaly, which will provide information concerning the specific prognosis of the condition, as well as estimate the risk of recurrence. A genetic diagnosis can also provide more reproductive choice for future pregnancies. © 2024 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.

Funder

Karolinska Institutet

Stockholm läns landsting

Hjärnfonden

Vetenskapsrådet

Publisher

Wiley

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Congenital anterior segment ocular disorders: Genotype-phenotype correlations and emerging novel mechanisms;Progress in Retinal and Eye Research;2024-09

2. Reply;Ultrasound in Obstetrics & Gynecology;2024-05

3. Reply;Ultrasound in Obstetrics & Gynecology;2024-05

4. High‐throughput sequencing in prenatal care: how to combine diagnostic performance and best practice?;Ultrasound in Obstetrics & Gynecology;2024-05

5. Whole‐genome sequencing: is it appropriate in prenatal setting?;Ultrasound in Obstetrics & Gynecology;2024-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3