Singularity‐Free Charged Compact Star Model Under F(Q)$F(Q)$‐Gravity Regime

Author:

Maurya Sunil Kumar1ORCID,Jasim Mahmood Khalid1,Errehymy Abdelghani2ORCID,Nisar Kottakkaran Sooppy3,Mahmoud Mona4,Nag Riju1

Affiliation:

1. Department of Mathematical and Physical Sciences College of Arts and Sciences, University of Nizwa Nizwa 616 Sultanate of Oman

2. Astrophysics Research Centre, School of Mathematics, Statistics and Computer Science University of KwaZulu‐Natal Private Bag X54001 Durban 4000 South Africa

3. Department of Mathematics College of Science and Humanities in Alkharj, Prince Sattam bin Abdulaziz University Al Kharj 16278 Saudi Arabia

4. Department of Physics College of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia

Abstract

AbstractIn this paper, the possibility of existing a novel class of compact charged spheres based on a charged perfect fluid within the realm of gravity theory is explored. The authors started by proposing physically meaningful explicit formulas for the potential, denoted , and the electric field to find a close‐form solution. More precisely, the change of the dependent variable approach by exploiting the transformation is applied. Successively, the field equations analytically are solved and generate the most general solution, which leads us to examine various significant aspects of the stellar system. These aspects comprise the regularity of gravitational potentials, energy density and pressure, electric charge, the mass‐radius relationship, subluminal sound velocities in the radial direction, and the adiabatic index for charged compact stars. For a more in‐depth system study, mass measurements using contour diagrams are carried out. This mainly involves varying the variable parameters and to distinguish their effect on the mass distribution within the stellar structure. What is more, the electric charge controls the stability of the stellar system is shown, which yields that a stable system can possess a maximum charge of order . The results strongly argue that charged stars could conceivably exist in nature and that such a deviation from traditional theories may be seen in future astrophysical observations.

Funder

King Khalid University

Publisher

Wiley

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3