Singularity Free Star Model Characterized by Quintessence Field in Quadratic f(Q)$f(Q)$ Gravity

Author:

Bhar Piyali1ORCID

Affiliation:

1. Department of Mathematics Government General Degree College Singur Hooghly West Bengal 712409 India

Abstract

AbstractIn the context of the theory of gravity, a spherically symmetric quintessence DE model in this article is offered. For this reason, has the formula , where Q stands for the non‐metricity scalar and ‘a’ is the coupling constant for modified gravity has been taken into account. It is supposed that the quintessence field defined by the parameter , where , controls the energy‐momentum tensor of the underlying fluid distribution. The relationship between several physical parameters for the selected values of ‘a’, by choosing the metric potentials suggested by the Krori‐Barua [Krori and Barua; J. Phys. A, Math. Gen. 8: 508, 1975] is investigated. Further, a number of analyses in detail to examine the physical validity of the proposed stellar model are carried out. The consequences of the compact star system caused by the connection of matter and geometry are succinctly described. The maximum allowable mass and radius for our present model for different values of ‘a’ have been studied by and curve. One can recover the usual general relativity (GR) standard results for .

Publisher

Wiley

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3