Communication Protocols and QECC From the Perspective of TQFT, Part II: QECCs as Spacetimes

Author:

Fields Chris1,Glazebrook James F.23,Marcianò Antonino456

Affiliation:

1. Allen Discovery Center Tufts University Medford MA 02155 USA

2. Department of Mathematics and Computer Science Eastern Illinois University Charleston IL 61920 USA

3. Adjunct Faculty, Department of Mathematics University of Illinois at Urbana‐Champaign Urbana IL 61801 USA

4. Center for Field Theory and Particle Physics & Department of Physics Fudan University Shanghai 200438 China

5. Laboratori Nazionali di Frascati INFN Frascati Rome 00044 Italy

6. INFN sezione Roma “Tor Vergata” Rome 00133 Italy

Abstract

AbstractTopological quantum field theories (TQFTs) provide a general, minimal‐assumption language for describing quantum‐state preparation and measurement. They therefore provide a general language in which to express multi‐agent communication protocols, e.g., local operations, classical communication (LOCC) protocols. In the accompanying Part I, we construct LOCC protocols using TQFT, and show that LOCC protocols induce quantum error‐correcting codes (QECCs) on the agent‐environment boundary. Such QECCs can be regarded as implementing or inducing the emergence of spacetimes on such boundaries. Here connection between inter‐agent communication and spacetime is investigated, by exploiting different realizations of TQFT. The authors delved into TQFTs that support on their boundaries spin‐networks as computational systems: these are known as topological quantum neural networks (TQNNs). TQNNs, which have a natural representation as tensor networks, implement QECC. The HaPPY code is recognized to be a paradigmatic example. How generic QECCs, as bulk‐boundary codes, induce effective spacetimes is then shown. The effective spatial and temporal separations that take place in QECC enables LOCC protocols between spatially separated observers. The implementation of QECCs in BF and Chern‐Simons theories are then considered, and QECC‐induced spacetimes are shown to provide the classical redundancy required for LOCC. Finally, the topological M‐theory is considered as an implementation of QECC in higher spacetime dimensions.

Funder

Fudan University

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3