Deep Learning‐Assisted Design of Novel Promoters in Escherichia coli

Author:

Wang Xinglong12,Xu Kangjie12,Tan Yameng12,Yu Shangyang12,Zhao Xinyi12,Zhou Jingwen123ORCID

Affiliation:

1. Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China

2. Science Center for Future Foods Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China

3. Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology Jiangnan University Wuxi 214122 China

Abstract

AbstractDeep learning (DL) approaches have the ability to accurately recognize promoter regions and predict their strength. Here, the potential for controllably designing active Escherichia coli promoter is explored by combining multiple deep learning models. First, “DRSAdesign,” which relies on a diffusion model to generate different types of novel promoters is created, followed by predicting whether they are real or fake and strength. Experimental validation showed that 45 out of 50 generated promoters are active with high diversity, but most promoters have relatively low activity. Next, “Ndesign,” which relies on generating random sequences carrying functional −35 and −10 motifs of the sigma70 promoter is introduced, and their strength is predicted using the designed DL model. The DL model is trained and validated using 200 and 50 generated promoters, and displays Pearson correlation coefficients of 0.49 and 0.43, respectively. Taking advantage of the DL models developed in this work, possible 6‐mers are predicted as key functional motifs of the sigma70 promoter, suggesting that promoter recognition and strength prediction mainly rely on the accommodation of functional motifs. This work provides DL tools to design promoters and assess their functions, paving the way for DL‐assisted metabolic engineering.

Funder

National Key Research and Development Program of China

Publisher

Wiley

Subject

Genetics,Molecular Biology,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3