Fractional‐order models of hepatitis B virus infection with recycling effects of capsids

Author:

Sutradhar Rupchand1ORCID,Dalal D. C.1ORCID

Affiliation:

1. Department of Mathematics Indian Institute of Technology Guwahati Guwahati Assam India

Abstract

Hepatitis B virus (HBV) infection is a major public health concern throughout the world. It can be treated effectively through proper medication and vaccination, although it is very difficult to cure, especially in people who have had the chronic infection. So, it is necessary to pay proper attention for its eradication. In this study, two nonlinear fractional‐order HBV infection models with recycling effects of capsids are presented via the Caputo derivative. Each model contains four compartments, namely, susceptible hepatocytes, infected hepatocytes, HBV capsids, and viruses. In the first model, the order of fractional derivatives is equal for each compartment, whereas, in the second model, the order is incommensurate. The existence and uniqueness of solutions for both models are discussed separately. The parameters are estimated in order to validate the proposed model with experimental data obtained from a chimpanzee. Stability analyses are carried out for both models theoretically. The models are solved numerically using the predictor–corrector Adams–Bashforthm–Moulton method (for commensurate order) and implicit product integration of trapezoidal type method (for incommensurate order) with various choices of fractional orders and initial conditions. All the results are presented graphically. Interestingly, the results reveal the importance of fractional‐order derivatives in capturing the dynamics of HBV transmission in the host. It is also noticed that with the decrease in the order of fractional derivative, the peak level of infection decreases, but the disease takes a long time to be cured.

Publisher

Wiley

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3