Peptide self‐assembly as a strategy for facile immobilization of redox enzymes on carbon electrodes

Author:

Grinberg Itzhak123ORCID,Ben‐Zvi Oren4ORCID,Adler‐Abramovich Lihi123ORCID,Yacoby Iftach4ORCID

Affiliation:

1. Department of Oral Biology, The Goldschleger School of Dental Medicine, Faculty of Medicine Tel Aviv University Tel Aviv Israel

2. The Center for Nanoscience and Nanotechnology, Tel Aviv University Tel Aviv Israel

3. The Center for the Physics and Chemistry of Living Systems, Tel Aviv University Tel Aviv Israel

4. School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv Israel

Abstract

AbstractRedox–enzyme‐mediated electrochemical processes such as hydrogen production, nitrogen fixation, and CO2 reduction are at the forefront of the green chemistry revolution. To scale up, the inefficient two‐dimensional (2D) immobilization of redox enzymes on working electrodes must be replaced by an efficient dense 3D system. Fabrication of 3D electrodes was demonstrated by embedding enzymes in polymer matrices. However, several requirements, such as simple immobilization, prolonged stability, and resistance to enzyme leakage, still need to be addressed. The study presented here aims to overcome these gaps by immobilizing enzymes in a supramolecular hydrogel formed by the self‐assembly of the peptide hydrogelator fluorenylmethyloxycarbonyl‐diphenylalanine. Harnessing the self‐assembly process avoids the need for tedious and potentially harmful chemistry, allowing the rapid loading of enzymes on a 3D electrode under mild conditions. Using the [FeFe] hydrogenase enzyme, high enzyme loads, prolonged resistance against electrophoresis, and highly efficient hydrogen production are demonstrated. Further, this enzyme retention is shown to arise from its interaction with the peptide nanofibrils. Finally, this method is successfully used to retain other redox enzymes, paving the way for a variety of enzyme‐mediated electrochemical applications.

Funder

Israel Science Foundation

Publisher

Wiley

Subject

Materials Chemistry,Energy (miscellaneous),Materials Science (miscellaneous),Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Economic Optimization of the Hydrogen Demand in a Hard-to-Abate Industrial Sector;2023 Asia Meeting on Environment and Electrical Engineering (EEE-AM);2023-11-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3