OFET Informatics: Observing the impact of organic transistor's design parameters on the device output performance using a machine learning algorithm

Author:

Mosalam Hana1,Hussien Salma1,Abdellatif Sameh O.1ORCID

Affiliation:

1. Department of Electrical Engineering, Faculty of Engineering and FabLab, Centre for Emerging Learning Technology (CELT) The British University in Egypt (BUE) Cairo Egypt

Abstract

AbstractOrganic field effect transistors (OFETs), used in the fabrication of nano‐sensors, are one of the most promising devices in organic electronics because of their lightweight, flexible, and low fabrication cost. However, the numerical modeling of such OFETs is still in an early stage due to the minimal analytical as well as numerical models presented in the literature. This research aims to demonstrate an experimentally verified machine‐learning model by investigating an OFET with polyaniline as a p‐type organic semiconductor. OFET's threshold voltage, on/off current ratio, subthreshold swing, and device mobilities are studied as the primary output chiasmatic parameters. The random‐forest machine learning model has shown the criticality of the doping effect on turning the OFET to depletion mode, with positive threshold voltage, under doping higher than cm−3. Additionally, the study highlights the effectiveness of the gate oxide thickness in controlling the OFET threshold voltage. A 50 nm oxide thickness showed sufficiency to have a non‐depleted OFET operation.

Funder

British University in Egypt

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Computer Science Applications,Modeling and Simulation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3