Assimilation of aircraft observations over the Indian monsoon region: Investigation of the effects of COVID‐19 on a reanalysis

Author:

Rani S. Indira1ORCID,Jangid Buddhi Prakash12ORCID,Francis Timmy13,Sharma Priti14,George Gibies1ORCID,Kumar Sumit1,Thota Mohan S.1,George John P.1,Nath Sankar4,Das Gupta Munmun1,Mitra Ashis Kumar1

Affiliation:

1. National Centre for Medium Range Weather Forecasting (NCMRWF) Ministry of Earth Sciences (MoES) Noida India

2. Indian Institute of Tropical Meteorology (IITM) Ministry of Earth Sciences Pune India

3. School of Earth and Environment University of Leeds Leeds UK

4. India Meteorological Department (IMD) Ministry of Earth Sciences New Delhi India

Abstract

AbstractSince March 2020, the COVID‐19 pandemic has significantly reduced the availability of global aircraft‐based observations (ABOs), which has been restored later in 2021. This study focuses on the impact of ABOs on a regional reanalysis. Indian Monsoon Data Assimilation and Analysis (IMDAA) is a regional reanalysis for a period from 1979 to 2020 (originally up to 2018) over India and surrounding regions produced at the National Centre for Medium Range Weather Forecasting (NCMRWF), India, in collaboration with the UK Met Office. A comparison of the impact of ABOs on other conventional and satellite observations assimilated in the NCMRWF global model and IMDAA during 2019 and 2020 revealed the importance of ABOs, particularly in IMDAA, since it did not assimilate the latest satellite data as the IMDAA system was frozen in October 2016. A data denial experiment that removes all the ABOs from the IMDAA assimilation system for a period from March to November 2019 is designed. The results from the IMDAA reanalysis run, which assimilates ABOs during the same period, are compared with the data denial experiment. Assimilation of ABOs strengthened the upper tropospheric circulation, the Tropical Easterly Jet (TEJ), during the Indian summer monsoon compared to the data denial experiment. Analysis of the features of two cyclones that developed over the North Indian Ocean during the study period revealed that ABO assimilation played a key role in simulating the track and intensity of these cyclones when they were in the ‘severe’ category. Since the sample is small, more cyclone cases need to be analysed to consolidate the result.

Publisher

Wiley

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3