Affiliation:
1. Institute of Modern Physics Chinese Academy of Sciences Lanzhou China
2. Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences Lanzhou China
3. Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province Lanzhou China
4. University of Chinese Academy of Sciences Beijing China
5. Putian Lanhai Nuclear Medicine Research Center Putian China
6. School of Nuclear Science and Technology Lanzhou University Lanzhou China
Abstract
AbstractBackgroundPlan verification is one of the important steps of quality assurance (QA) in carbon ion radiotherapy. Conventional methods of plan verification are based on phantom measurement, which is labor‐intensive and time‐consuming. Although the plan verification method based on Monte Carlo (MC) simulation provides a more accurate modeling of the physics, it is also time‐consuming when simulating with a large number of particles. Therefore, how to ensure the accuracy of simulation results while reducing simulation time is the current difficulty and focus.PurposeThe purpose of this work was to evaluate the feasibility of using deep learning‐based MC denoising method to accelerate carbon‐ion radiotherapy plan verification.MethodsThree models, including CycleGAN, 3DUNet and GhostUNet with Ghost module, were used to denoise the 1 × 106 carbon ions‐based MC dose distribution to the accuracy of 1 × 108 carbon ions‐based dose distribution. The CycleGAN's generator, 3DUNet and GhostUNet were all derived from the 3DUNet network. A total of 59 cases including 29 patients with head‐and‐neck cancers and 30 patients with lung cancers were collected, and 48 cases were randomly selected as the training set of the CycleGAN network and six cases as the test set. For the 3DUNet and GhostUNet models, the numbers of training set, validation set, and test set were 47, 6, and 6, respectively. Finally, the three models were evaluated qualitatively and quantitatively using RMSE and three‐dimensional gamma analysis (3 mm, 3%).ResultsThe three end‐to‐end trained models could be used for denoising the 1 × 106 carbon ions‐based dose distribution, and their generalization was proved. The GhostUNet obtained the lowest RMSE value of 0.075, indicating the smallest difference between its denoised and 1 × 108 carbon ions‐based dose distributions. The average gamma passing rate (GPR) between the GhostUNet denoising‐based versus 1 × 108 carbon ions‐based dose distributions was 99.1%, higher than that of the CycleGAN at 94.3% and the 3DUNet at 96.2%. Among the three models, the GhostUNet model had the fewest parameters (4.27 million) and the shortest training time (99 s per epoch) but achieved the best denoising results.ConclusionThe end‐to‐end deep network GhostUNet outperforms the CycleGAN, 3DUNet models in denoising MC dose distributions for carbon ion radiotherapy. The network requires less than 5 s to denoise a sample of MC simulation with few particles to obtain a qualitative and quantitative result comparable to the dose distribution simulated by MC with relatively large number particles, offering a significant reduction in computation time.
Funder
National Basic Research Program of China
National Natural Science Foundation of China
Natural Science Foundation of Gansu Province
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献