Affiliation:
1. Georg‐August‐Universität Göttingen Germany
Abstract
AbstractIn Trefftz discontinuous Galerkin methods a partial differential equation is discretized using discontinuous shape functions that are chosen to be elementwise in the kernel of the corresponding differential operator. We propose a new variant, the embedded Trefftz discontinuous Galerkin method, which is the Galerkin projection of an underlying discontinuous Galerkin method onto a subspace of Trefftz‐type. The subspace can be described in a very general way and to obtain it no Trefftz functions have to be calculated explicitly, instead the corresponding embedding operator is constructed. In the simplest cases the method recovers established Trefftz discontinuous Galerkin methods. But the approach allows to conveniently extend to general cases, including inhomogeneous sources and non‐constant coefficient differential operators. We introduce the method, discuss implementational aspects and explore its potential on a set of standard PDE problems. Compared to standard discontinuous Galerkin methods we observe a severe reduction of the globally coupled unknowns in all considered cases, reducing the corresponding computing time significantly. Moreover, for the Helmholtz problem we even observe an improved accuracy similar to Trefftz discontinuous Galerkin methods based on plane waves.
Subject
Applied Mathematics,General Engineering,Numerical Analysis
Reference56 articles.
1. Trefftz Finite Element Method and Its Applications
2. Trefftz method: an overview
3. A basic set of homogeneous harmonic polynomials in k$$ \mathrm{k} $$ variables;Miles EP;Proc Am Math Soc,1955
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献