Hybrid equilibrium formulation with adaptive element side orientation for cohesive crack prediction

Author:

Parrinello Francesco1ORCID

Affiliation:

1. Engineering Department University of Palermo Palermo Italy

Abstract

AbstractThe present article proposes an hybrid equilibrium element (HEE) formulation for the prediction of cohesive fracture formation and propagation with the crack modelled by extrinsic interface embedded at element sides. The hybrid equilibrium element formulation can model high order (quadratic, cubic and quartic) stress fields which strongly satisfy homogeneous equilibrium equations, inter‐element and boundary equilibrium equations. The HEE can implicitly model both the initially rigid behaviour of an extrinsic interface and its debonding condition with separation displacement and softening. The extrinsic interface is embedded at the element sides and its behaviour is governed by means of the same degrees of freedom of HEE (generalized stresses), without any additional degree of freedom. The proposed extrinsic cohesive model is developed in the thermodynamic framework of damage mechanics. The proposed crack propagation criterion states that crack grows when the maximum principal stress reaches the tensile strength value, in a direction orthogonal to the principal stress direction. The crack is embedded at an element side and the mesh around crack tip is adapted, by rotation of the element sides, in order to have the interface aligned to the crack growth direction. Three classic two‐dimensional problems of fracture propagation are numerically reproduced and the results compared to the experimental data or to the other numerical results.

Funder

MUR

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3