A machine learning framework for improving refinery production planning

Author:

Santander Omar1,Kuppuraj Vidyashankar2,Harrison Christopher A.2,Baldea Michael13ORCID

Affiliation:

1. McKetta Department of Chemical Engineering The University of Texas at Austin Austin Texas USA

2. Marathon Petroleum Corporation Garyville Louisiana USA

3. Institute for Computational Engineering and Sciences, The University of Texas at Austin Austin Texas USA

Abstract

AbstractWe propose a framework that relies on machine learning techniques and statistical modeling to enhance industrial production planning. Supervised learning is employed to improve the production planning model, whereas unsupervised learning is used to achieve economic synchronization between the process control and production planning layers. Finally, an upgraded production planning decision‐making structure is formulated where model uncertainty, the effect of process control/disturbances, and time correlation are considered. The proposed framework is implemented on an industry‐relevant refinery model demonstrating that the performance of the framework is substantially better than established industrial production planning techniques.

Publisher

Wiley

Subject

General Chemical Engineering,Environmental Engineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3