Mesenchymal Stromal Cell-Secreted CCL2 Promotes Antibacterial Defense Mechanisms Through Increased Antimicrobial Peptide Expression in Keratinocytes

Author:

Marx Charlotte1,Gardner Sophia1,Harman Rebecca M.1,Wagner Bettina2,Van de Walle Gerlinde R.1ORCID

Affiliation:

1. Baker Institute for Animal Health  College of Veterinary Medicine, Cornell University, Ithaca, New York, USA

2. Department of Population Medicine and Diagnostic Sciences  College of Veterinary Medicine, Cornell University, Ithaca, New York, USA

Abstract

Abstract Mesenchymal stromal cells (MSCs) from both humans and horses, which represent a clinically relevant translation animal model for human cutaneous wound healing, were recently found to possess antimicrobial properties against planktonic bacteria, and in the case of equine MSCs, also against biofilms. This, together with previous findings that human and equine MSCs promote angiogenesis and wound healing, makes these cells an attractive approach to treat infected cutaneous wounds in both species. The anti-biofilm activities of equine MSC, via secretion of cysteine proteases, have only been demonstrated in vitro, thus lacking information about in vivo relevance. Moreover, the effects of the equine MSC secretome on resident skin cells have not yet been explored. The goals of this study were to (a) test the efficacy of the MSC secretome in a physiologically relevant ex vivo equine skin biofilm explant model and (b) explore the impact of the MSC secretome on the antimicrobial defense mechanisms of resident skin cells. Our salient findings were that secreted factors from equine MSCs significantly decreased viability of methicillin-resistant Staphylococcus aureus bacteria in mature biofilms in this novel skin biofilm explant model. Moreover, we demonstrated that equine MSCs secrete CCL2 that increases the antimicrobial activity of equine keratinocytes by stimulating expression of antimicrobial peptides. Collectively, these data contribute to our understanding of the MSC secretome's antimicrobial properties, both directly by killing bacteria and indirectly by stimulating immune responses of surrounding resident skin cells, thus further supporting the value of MSC secretome-based treatments for infected wounds.

Funder

USDA/NIFA

Morris Animal Foundation

Harry M. Zweig Memorial Fund for Equine Research

USDA National Institute of Food and Agriculture

National Institute of Food and Agriculture

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3