Drought survival strategies differ between coastal and montane conifers in northern California

Author:

Robinson Wallis12,Kerhoulas Lucy P.1ORCID,Sherriff Rosemary L.3ORCID,Roletti Gabriel1,van Mantgem Phillip J.4

Affiliation:

1. Department of Forestry and Wildland Resources California State Polytechnic University, Humboldt, 1 Harpst Street Arcata California 95521 USA

2. University of California Agriculture and Natural Resources Davis California 95618 USA

3. Department of Geography, Environment, and Spatial Analysis California State Polytechnic University, Humboldt, 1 Harpst Street Arcata California 95521 USA

4. U.S. Geological Survey Western Ecological Research Center, 1655 Heindon Road Arcata California 95521 USA

Abstract

AbstractIncreasingly severe and prolonged droughts are contributing to tree stress and forest mortality across western North America. However, in many cases, we currently have poor information concerning how drought responses in forests vary in relation to competition, climate, and site and tree characteristics. We used annual tree ring evidence of 13C discrimination (Δ13C) and growth metrics to assess drought resistance and resilience for six conifer species at the intersection of several bioregions in northern California. Within each species' range in northern California, we collected competition and tree characteristics from 270 focal trees across sites that varied from wetter to drier habitat conditions (54 sites). Across sites, all six conifer species weathered the severe 2013–2015 drought with reasonably high resistance and post‐drought resilience. However, we found important differences in drought responses between coastal and montane species based on annual growth and Δ13C metrics. Broadly, the two coastal species showed consistent declines in drought resistance across successive drought years, whereas the four montane species maintained high drought resistance across drought years. More specifically, we found lower Δ13C and growth during drought years in coastal species, suggesting stomatal closure during drought with the potential for vulnerability to carbon depletion during long‐term drought. Conversely, Δ13C and growth were stable in montane species throughout the drought, which may contribute to hydraulic failure under increased drought frequency and/or severity. We also evaluated environmental factors that affect Δ13C using data from before and during the drought. These physiological models were consistent for the two coastal species, with a positive relationship between annual precipitation and Δ13C and a negative relationship between tree density and Δ13C. Conversely, the four montane models illustrated a greater importance of site conditions on drought responses for these species. Our findings show differential risk for drought stress across diverse conifers during severe drought. This work highlights the importance of site and tree characteristics in determining drought responses across cool, annually humid coastal habitats to seasonally dry montane habitats.

Funder

National Science Foundation

Publisher

Wiley

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3