Quantifying uncertainty in coastal salinity regime for biological application using quantile regression

Author:

Yurek Simeon1ORCID,Allen Micheal2,Eaton Mitchell J.3ORCID,Chagaris David2,Reaver Nathan4ORCID,Martin Julien15,Frederick Peter6,Dehaven Mark7

Affiliation:

1. U.S. Geological Survey Wetland and Aquatic Research Center Gainesville Florida USA

2. Nature Coast Biological Station Institute of Food and Agricultural Sciences, University of Florida Gainesville Florida USA

3. Southeast Climate Adaptation Science Center U.S. Geological Survey, North Carolina State University Raleigh North Carolina USA

4. Water Institute, University of Florida Gainesville Florida USA

5. U.S. Geological Survey, Eastern Ecological Science Center Laurel Maryland USA

6. Department of Wildlife Ecology and Conservation University of Florida Gainesville Florida USA

7. Florida Department of Agriculture and Consumer Services Cedar Key Florida USA

Abstract

AbstractSalinity regimes in coastal ecosystems are highly dynamic and driven by complex geomorphic and hydrological processes. Estuarine biota are generally adapted to salinity fluctuation, but are vulnerable to salinity extremes. Characterizing coastal salinity regime for ecological studies therefore requires representing extremes of salinity ranges at time scales relevant to ecology (e.g., daily, monthly, and seasonally). Here, we propose a framework for modeling coastal salinity with these overall goals: (1) quantify uncertainty in salinity associated with important terrestrial and oceanographic drivers, (2) examine time scales of salinity response to river streamflow events, and (3) predict salinity continuously over space at key time scales. Salinity is modeled as quantile surfaces related to river discharge, tidal dynamics, wind, and spatial location, applied to Suwannee Sound estuary, FL, USA, where salinity has been monitored spatially since 1981. Each quantile level is regressed independently, and together they comprise a distribution of salinity uncertainty across space, with upper and lower quantiles describing salinity extremes. Effects of physical drivers on salinity are compared through four base models with various combinations of tide and wind variables, each including spatial coordinates and a single streamflow metric (in cubic meters per second). Multiple time scales of streamflow are considered by taking means across various periods, from 1 to 12 days, and at various lagged intervals prior to salinity sample, totaling 144 streamflow metrics. We found that the Suwannee coastal salinity regime is dynamic at multiple time scales and varies nonlinearly across space from the river effluence outward. Salinity increases nonlinearly with decreasing river flow rates below 200 m3/s, most prominently in the lower quantiles of salinity (τ = 0.05–0.25). Wind appears to have a stronger influence on salinity than astronomic tides for this estuary. The regression approach developed here can be applied to any coastal system that has sufficient spatial and temporal monitoring coverage to capture multiple flood and drought events. It is implemented with a simpleRroutine, and is less computationally‐intensive than finite difference hydrodynamic modeling. The characterizations of salinity uncertainty developed in these analyses can be directly applied to future studies of fish and wildlife responses to changes in watershed management.

Funder

Institute of Food and Agricultural Sciences, University of Florida

U.S. Fish and Wildlife Service

U.S. Geological Survey

Publisher

Wiley

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3