Insight into rechargeable batteries in extreme environment for deep space exploration

Author:

He Yi1,Shang Wenxu2,Tan Peng13

Affiliation:

1. Department of Thermal Science and Energy Engineering University of Science and Technology of China (USTC) Hefei China

2. Deep Space Exploration Laboratory Hefei China

3. State Key Laboratory of Fire Science University of Science and Technology of China (USTC) Hefei China

Abstract

AbstractSince the beginning of the new century, the objectives of deep space exploration missions targeting celestial bodies such as the Moon and Mars shift from “understanding celestial bodies” to “utilizing celestial bodies.” With respect to the successful operation of various load missions, secondary battery systems play a crucial role in supplying energy. However, unlike terrestrial environment, extremely harsh extraterrestrial conditions, including extreme temperatures and radiation, severely limit the application of batteries in deep spaces. This work covers recent advancements in batteries, including electrolyte/electrode optimization strategies and thermal management under extreme low‐ and high‐temperature conditions and the mechanism analysis of key battery components under radiation environments. Finally, perspectives are given on the remaining challenges posed by battery applications in extreme deep space environment.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3