Affiliation:
1. Department of Thermal Science and Energy Engineering University of Science and Technology of China (USTC) Hefei China
2. Deep Space Exploration Laboratory Hefei China
3. State Key Laboratory of Fire Science University of Science and Technology of China (USTC) Hefei China
Abstract
AbstractSince the beginning of the new century, the objectives of deep space exploration missions targeting celestial bodies such as the Moon and Mars shift from “understanding celestial bodies” to “utilizing celestial bodies.” With respect to the successful operation of various load missions, secondary battery systems play a crucial role in supplying energy. However, unlike terrestrial environment, extremely harsh extraterrestrial conditions, including extreme temperatures and radiation, severely limit the application of batteries in deep spaces. This work covers recent advancements in batteries, including electrolyte/electrode optimization strategies and thermal management under extreme low‐ and high‐temperature conditions and the mechanism analysis of key battery components under radiation environments. Finally, perspectives are given on the remaining challenges posed by battery applications in extreme deep space environment.