A fast and reliable microplate reader assay to assess the antiviral efficacy of cold plasma devices

Author:

Bekeschus Sander12ORCID,Skowski Henry13,Hahn Veronika1ORCID,Bansemer Robert1,Gerling Torsten1,Weltmann Klaus‐Dieter1,von Woedtke Thomas14ORCID

Affiliation:

1. Leibniz Institute for Plasma Science and Technology (INP) Greifswald Germany

2. Department of Dermatology and Venerology Rostock University Medical Center Rostock Germany

3. Institute of Physiology Greifswald University Medical Center Greifswald Germany

4. Institute for Hygiene and Environmental Medicine Greifswald University Medical Center Greifswald Germany

Abstract

AbstractSpurred by global COVID‐19, work in recent years has demonstrated that various devices based on technology generating cold plasma are capable of reducing the infectivity of virus particles. There is great potential in this approach, which is, however, hampered by the ability of most cold plasma science laboratories to test for antiviral effects of their individual plasma sources in sophisticated mammalian cell test systems. To this end, we developed a quick, simple, and fast assay system based on bacteriophages and their ability to lyse bacterial hosts, which can be monitored in readily available microplate readers. We successfully demonstrated the principal ability of this approach using two types of plasma jets, different microplate readers, and two different bacteriophage strains.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3