Deep reinforcement learning‐based full‐duplex link scheduling in federated learning‐based computing for IoMT

Author:

Guan Zheng1,Li Ya1ORCID,Yu Shengqian1,Yang Zhijun1

Affiliation:

1. School of Information Science and Engineering Yunnan University Kunming China

Abstract

SummaryThe rapid developments in mini‐hardware manufacturing and wireless network communications have enabled the Internet of Medical Things (IoMT) to provide continuous healthcare services over the Internet. Federated learning (FL) combined with blockchain technology has been a popular way to resolve privacy‐preserving data sharing in IoMT‐based wireless body area networks (WBANs), on the other side, communication payloads become much heavier than traditional healthcare sensor network, because central server should aggregate the model updates and orchestrate the training tasks. The high latency will lead to FL's low system efficiency. However, the existing studies on FL mainly focus on the system design and algorithm optimization, which ignore a critical problem of data transmission in the FL system. To improve the communication performance, we proposed a two‐tier scheduling algorithm in which a full‐duplex (FD) multiple access based scheduling algorithm is employed to improve channel utility and network throughput, and decrease the delay in tier II. A deep reinforcement learning (DRL) framework is used to generate the FD links between hubs and access points (APs) which jointly considers the channel state, fairness, and delay. Therefore, the DRL‐based FD Link Scheduling (R‐FDLS) algorithm is proposed. When the traffic volume is different or in various distribution scenarios, the evaluation results demonstrate that the proposed algorithm significantly improves the network communication quality, as well as has obvious advantages compared to several baselines.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3