Study on ultra‐low cycle fatigue fracture of thick‐walled steel bridge piers

Author:

Li Shuailing1,Zhuge Hanqing2,Xie Xu3

Affiliation:

1. Tsinghua University, Department of Civil Engineering Beijing 100084 China

2. Zhejiang University of Science and Technology, School of Civil Engineering and Architecture Zhejiang Province 310058 China

3. Zhejiang University, College of Civil Engineering and Architecture Zhejiang Province 310058 China

Abstract

AbstractSteel structures with thick‐walled section tend to have local fracture before the occurrence of instability under strong earthquakes, which is termed as ultra‐low cycle fatigue (ULCF). In this study, a series of specimens made with structural steel Q345qC for bridge in China were firstly tested to investigate the ULCF fracture behaviour in material level. Based on the test data, three models for ULCF fracture were calibrated. Subsequently, the fracture behaviour of thick‐walled square section steel bridge piers were also investigated in component level. Moreover, the finite element global and submodels of steel bridge piers were established, and ULCF fracture initiation life was predicted by calibrated models and validated against test results. The research results showed that the crack firstly occurred at the bottom of piers under cyclic oblique loading, which was at the junction between base plate and bottom weld, and then, cracks propagated along the bottom weld metal which did not cause a decrease in strength capacity. Finally, the strength capacity of steel bridge piers began to rapidly declined as cracks propagated into base metal. The presented finite element global model can accurately simulate the cyclic behaviour of steel bridge piers, and the submodel has the ability of capturing the local stress and plastic strain. The fracture models accurately predicted ULCF fracture initiation life of steel bridge piers with the average discrepancy of 7.14%. The developed finite element analysis method considering ULCF fracture provides a solution for the further parametric analysis on ULCF fracture performance of steel bridge piers.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference30 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3