Affiliation:
1. Institute of Automation Qufu Normal University Qufu China
Abstract
AbstractThe optimal control issue of discrete‐time nonlinear unknown systems with time‐delay control input is the focus of this work. In order to reduce communication costs, a reinforcement learning‐based event‐triggered controller is proposed. By applying the proposed control method, closed‐loop system's asymptotic stability is demonstrated, and a maximum upper bound for the infinite‐horizon performance index can be calculated beforehand. The event‐triggered condition requires the next time state information. In an effort to forecast the next state and achieve optimal control, three neural networks (NNs) are introduced and used to approximate system state, value function, and optimal control. Additionally, a M NN is utilized to cope with the time‐delay term of control input. Moreover, taking the estimation errors of NNs into account, the uniformly ultimately boundedness of state and NNs weight estimation errors can be guaranteed. Ultimately, the validity of proposed approach is illustrated by simulations.
Funder
Taishan Scholar Foundation of Shandong Province
National Natural Science Foundation of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献