Insights into the catalytic mechanism of a bacterial deglycase essential for utilization of fructose‐lysine

Author:

Kovvali Sravya12,Gao Yuan23,Cool Austin2,Lindert Steffen2ORCID,Wysocki Vicki H.23ORCID,Bell Charles E.24ORCID,Gopalan Venkat12ORCID

Affiliation:

1. Department of Microbiology The Ohio State University Columbus Ohio USA

2. Department of Chemistry & Biochemistry The Ohio State University Columbus Ohio USA

3. Resource for Native MS‐Guided Structural Biology The Ohio State University Columbus Ohio USA

4. Department of Biological Chemistry & Pharmacology The Ohio State University Columbus Ohio USA

Abstract

AbstractAmadori rearrangement products are stable sugar‐amino acid conjugates that are formed nonenzymatically during preparation, dehydration, and storage of foods. Because Amadori compounds such as fructose‐lysine (F‐Lys), an abundant constituent in processed foods, shape the animal gut microbiome, it is important to understand bacterial utilization of these fructosamines. In bacteria, F‐Lys is first phosphorylated, either during or after uptake to the cytoplasm, to form 6‐phosphofructose‐lysine (6‐P‐F‐Lys). FrlB, a deglycase, then converts 6‐P‐F‐Lys to L‐lysine and glucose‐6‐phosphate. Here, to elucidate the catalytic mechanism of this deglycase, we first obtained a 1.8‐Å crystal structure of Salmonella FrlB (without substrate) and then used computational approaches to dock 6‐P‐F‐Lys on this structure. We also took advantage of the structural similarity between FrlB and the sugar isomerase domain of Escherichia coli glucosamine‐6‐phosphate synthase (GlmS), a related enzyme for which a structure with substrate has been determined. An overlay of FrlB—6‐P‐F‐Lys on GlmS—fructose‐6‐phosphate structures revealed parallels in their active‐site arrangement and guided our selection of seven putative active‐site residues in FrlB for site‐directed mutagenesis. Activity assays with eight recombinant single‐substitution mutants identified residues postulated to serve as the general acid and general base in the FrlB active site and indicated unexpectedly significant contributions from their proximal residues. By exploiting native mass spectrometry (MS) coupled to surface‐induced dissociation, we distinguished mutations that impaired substrate binding versus cleavage. As demonstrated with FrlB, an integrated approach involving x‐ray crystallography, in silico approaches, biochemical assays, and native MS can synergistically aid structure–function and mechanistic studies of enzymes.

Funder

National Institutes of Health

Publisher

Wiley

Subject

Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deglycation activity of the Escherichia coli glycolytic enzyme phosphoglucose isomerase;International Journal of Biological Macromolecules;2024-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3