Pressureless all‐solid‐state Na/S batteries with self‐supporting Na5YSi4O12 scaffolds

Author:

Yang Aikai12ORCID,Ye Ruijie1,Song Huimin3,Lu Qiongqiong45,Wang Xingchao6,Dashjav Enkhtsetseg1,Yao Kai1,Grüner Daniel7,Ma Qianli1,Tietz Frank1ORCID,Guillon Olivier128

Affiliation:

1. Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research (IEK‐1) Jülich Germany

2. Institute of Mineral Engineering (GHI) RWTH Aachen University Aachen Germany

3. Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, School of Materials Science and Engineering Peking University Beijing China

4. Institute of Materials Henan Academy of Sciences Zhengzhou Henan China

5. Henan Key Laboratory of Advanced Conductor Materials Zhengzhou Henan China

6. State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry Xinjiang University Urumqi Xinjiang China

7. Forschungszentrum Jülich GmbH Institute of Energy and Climate Research (IEK‐2) Jülich Germany

8. Jülich Aachen Research Alliance, JARA‐Energy Jülich Germany

Abstract

AbstractThe development of reliable and affordable all‐solid‐state sodium metal batteries (ASS‐SMBs) requires suitable solid‐state electrolytes with cost‐efficient processing and stabilized electrode/electrolyte interfaces. Here, an integrated porous/dense/porous Na5YSi4O12 (NYS) trilayered scaffold is designed and fabricated by tape casting using aqueous slurries. In this template‐based NYS scaffold, the dense layer in the middle serves as a separator and the porous layers on both sides accommodate the active materials with their volume changes during the charge/discharge processes, increasing the contact area and thus enhancing the utilization rate and homogenizing the current distribution. The Na/NYS/Na symmetric cells with the Pb‐coated NYS scaffold exhibit significantly reduced interfacial impedance and superior critical current density of up to 3.0 mA cm−2 against Na metal owing to enhanced wettability. Furthermore, the assembled Na/NYS/S full cells operated without external pressure at room temperature showed a high initial discharge capacity of 970 mAh g−1 and good cycling stability with a capacity of 600 mAh g−1 after 150 cycles (based on the mass of sulfur). This approach paves the way for the realization of economical and practical ASS‐SMBs from the perspective of ceramic manufacturing.

Funder

China Scholarship Council

Bundesministerium für Forschung und Technologie

Publisher

Wiley

Subject

Materials Chemistry,Energy (miscellaneous),Materials Science (miscellaneous),Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3