Survey of freshwater mussels using high‐resolution acoustic imaging sonar and deep learning‐based object detection in Lake Izunuma, Japan

Author:

Zhao Fan1ORCID,Mizuno Katsunori1,Tabeta Shigeru1,Hayami Hiroki2,Fujimoto Yasufumi2ORCID,Shimada Tetsuo2

Affiliation:

1. Graduate School of Frontier Sciences The University of Tokyo Kashiwa City Chiba Japan

2. The Miyagi Prefectural Izunuma‐Uchinuma Environmental Foundation Kurihara City Miyagi Japan

Abstract

Abstract The use of traditional in situ methods for underwater surveys to map freshwater mussel habitats is limited by challenges such as water transparency, depth and high labour demands. In this study, adaptive resolution imaging sonar (ARIS) was applied to monitor mussel distribution and abundance. In contrast to conventional quadrat surveys, this acoustic survey is non‐invasive and enables direct observation of mussels to allow their survival status to be determined in turbid water. ARIS produces high‐quality acoustic images that facilitate the creation of a distribution map for broader‐scale monitoring, especially if paired with deep learning methods such as the YOLOv4 algorithm for automatic mussel detection and classification. ARIS was successfully applied to surveying over 2000 m2 of Lake Izunuma in Miyagi, Japan. In one site, a high mussel abundance of ~0.6 individuals/m2 was detected, while other sites had low densities. The detection model achieved a mean average precision of 0.97. The survey results were used to generate a distribution map of living mussels. This study illustrates the feasibility of using an acoustic video camera with an open‐source deep learning algorithm to monitor mussels and other benthos in turbid water.

Funder

Japan Society for the Promotion of Science

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Aquatic Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Deep Learning Approach Combining Super-Resolution and Segmentation to Identify Weed and Tobacco in UAV Imagery;2024 9th International Conference on Electronic Technology and Information Science (ICETIS);2024-05-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3