Gene Expression Profiling of Neural Stem Cells and Identification of Regulators of Neural Differentiation During Cortical Development

Author:

Ohtsuka Toshiyuki1,Shimojo Hiromi1,Matsunaga Mitsuhiro1,Watanabe Naoki1,Kometani Kohei2,Minato Nagahiro2,Kageyama Ryoichiro1

Affiliation:

1. Department of Cell Biology, Institute for Virus Research, Kyoto University, Kyoto, Japan

2. Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan

Abstract

Abstract During mammalian brain development, neural stem cells transform from neuroepithelial cells to radial glial cells and finally remain as astrocyte-like cells in the postnatal and adult brain. Neuroepithelial cells divide symmetrically and expand the neural stem cell pool; after the onset of neurogenesis, radial glial cells sequentially produce deep layer neurons and then superficial layer neurons by asymmetric, self-renewing divisions during cortical development. Thereafter, gliogenesis supersedes neurogenesis, while a subset of neural stem cells retain their stemness and lurk in the postnatal and adult brain. Thus, neural stem cells undergo alterations in morphology and the capacity to proliferate or give rise to various types of neural cells in a temporally regulated manner. To shed light on the temporal alterations of embryonic neural stem cells, we sorted the green fluorescent protein-positive cells from the dorsolateral telencephalon (neocortical region) of pHes1-d2EGFP transgenic mouse embryos at different developmental stages and performed gene expression profiling. Among dozens of transcription factors differentially expressed by cells in the ventricular zone during the course of development, several of them exhibited the activity to inhibit neuronal differentiation when overexpressed. Furthermore, knockdown of Tcf3 or Klf15 led to accelerated neuronal differentiation of neural stem cells in the developing cortex, and neurospheres originated from Klf15 knockdown cells mostly lacked neurogenic activities and only retained gliogenic activities. These results suggest that Tcf3 and Klf15 play critical roles in the maintenance of neural stem cells at early and late embryonic stages, respectively.

Funder

Ministry of Education, Culture, Sports, Science and Technology of Japan

Laboratory for Lymphocyte Differentiation, RIKEN Research Center for Allergy and Immunology, Yokohama, Japan

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3