Deep learning‐based identification of sinoatrial node‐like pacemaker cells from SHOX2/HCN4 double‐positive cells differentiated from human iPS cells

Author:

Wakimizu Takayuki1ORCID,Naito Junpei2,Ishida Manabu23,Kurata Yasutaka4,Tsuneto Motokazu5,Shirayoshi Yasuaki5,Hisatome Ichiro6

Affiliation:

1. Division of Regenerative Medicine and Therapeutics, Department of Genetic Medicine and Regenerative Therapeutics Tottori University Graduate School of Medical Science Yonago Japan

2. ERISA Corporation Matsue Japan

3. Department of Neurology Shimane University Izumo Japan

4. Department of Physiology II Kanazawa Medical University Uchinada Japan

5. Genomic Medicine and Regenerative Therapy, Division of Regenerative Medicine and Therapeutics, Faculty of Medicine Tottori University Yonago Japan

6. Department of Cardiology National Hospital Organization, Yonago Medical Center Yonago Japan

Abstract

AbstractBackgroundCardiomyocytes derived from human iPS cells (hiPSCs) include cells showing SAN‐ and non‐SAN‐type spontaneous APs.ObjectivesTo examine whether the deep learning technology could identify hiPSC‐derived SAN‐like cells showing SAN‐type‐APs by their shape.MethodsWe acquired phase‐contrast images for hiPSC‐derived SHOX2/HCN4 double‐positive SAN‐like and non‐SAN‐like cells and made a VGG16‐based CNN model to classify an input image as SAN‐like or non‐SAN‐like cell, compared to human discriminability.ResultsAll parameter values such as accuracy, recall, specificity, and precision obtained from the trained CNN model were higher than those of human classification.ConclusionsDeep learning technology could identify hiPSC‐derived SAN‐like cells with considerable accuracy.

Funder

Japan Society for the Promotion of Science

Publisher

Wiley

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3