UCP2 Regulates Embryonic Neurogenesis via ROS-Mediated Yap Alternation in the Developing Neocortex

Author:

Ji Fen1ORCID,Shen Tianjin12,Zou Wenzheng13,Jiao Jianwei12

Affiliation:

1. a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China

2. b University of Chinese Academy of Sciences, Beijing, People's Republic of China

3. c College of Life Sciences, Qufu Normal University, Qufu, Shandong, People's Republic of China

Abstract

Abstract Mitochondrial metabolism is a fundamental process in tissue development. How this process play functions in embryonic neurogenesis remains largely unknown. Here, we show that mitochondrial uncoupling protein 2 (UCP2) regulates the embryonic neurogenesis by inhibiting the production of reactive oxygen species (ROS), which affect the proliferation of progenitors. In the embryonic brains of UCP2 knockdown or condition knockout mice, the proliferation of progenitors is significantly increased, while the differentiation of progenitors is reduced. Furthermore, we identify that Yap is the response protein of UCP2-mediated ROS production. When UCP2 is inactive, the production of ROS is increased. The amount of Yap protein is increased as Yap degradation through ubiquitin–proteasome proteolytic pathway is decreased. The defect caused by UCP2 depression can be rescued by Yap downregulation. Collectively, our results demonstrate that UCP2 regulates embryonic neurogenesis through ROS-mediated Yap alternation, thus shedding new sight on mitochondrial metabolism involved in embryonic neurogenesis.

Funder

National Key Basic Research Program of China

National Science Foundation of China

K.C. Wong Education Foundation

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3