Microstructural characterization of depth hoar and ice‐crust layers using a micro‐CT, and hypothesis of ice‐crust formation under a thunderstorm

Author:

Li Yuan1,Fu Ciao2,Keegan Kaitlin3,Yang Junhua4,Huang Gang56,Baker Ian1ORCID

Affiliation:

1. Thayer School of Engineering Dartmouth College Hanover New Hampshire USA

2. School of Earth Sciences Yunnan University Kunming China

3. Department of Geological Sciences & Engineering University of Nevada, Reno Reno Nevada USA

4. State Key Laboratory of Cryospheric Sciences Northwest Institute of Eco‐Environment and Resources, Chinese Academy of Sciences Lanzhou China

5. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics Institute of Atmospheric Physics, Chinese Academy of Sciences Beijing China

6. Laboratory for Regional Oceanography and Numerical Modeling Qingdao National Laboratory for Marine Science and Technology Qingdao China

Abstract

AbstractThe microstructural features typical of depth hoar and ice‐crust layers in both blocks of snow and a firn core that were extracted at Summit, Greenland (72°35′ N, 38°25′ W) in June, 2017 have been characterized using x‐ray microcomputed tomography (micro‐CT). In the depth hoar, the density is much lower, and the porosity, pore sizes, and specific surface area (SSA) are greater than those in adjacent layers. In the ice‐crusts, the density and the particle size are greater, and the porosity, pore size, and SSA are less than those in adjacent layers. Note that the mean structure thickness in the depth hoar was greater than that in adjacent layers, but that increase was simply related to the one‐ or two‐dimension ice crystals, that is, needle‐like or plate‐like structures, being included in the measurements for depth hoar. Using related microstructural parameters derived from the micro‐CT data, we propose a model based on refreezing of pre‐melted water (PMW) droplets electrostatically‐transported by the electric field between thunderclouds and the ice sheet created by a thunderstorm that describes the processes of the ice‐crust formation (ICF). Whether the ice‐crust forms with depth hoar depends on both the kinetic energy from the PMW droplets and the latent heat liberated from the freezing of the PMW. This work is the first to build the relationship between the atmosphere and ice sheets by a thunderstorm. Finally, we provide an experimental geophysics‐based method through the ICF under laboratory conditions to learn more about the interaction between atmospheric electrodynamics and thermodynamics.

Funder

National Natural Science Foundation of China

State Key Laboratory of Cryospheric Sciences, Chinese Academy of Sciences

Publisher

Wiley

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3