Streamflow change of major rivers over the Tibetan Plateau during the last half century and its possible causes

Author:

Yong Bin12ORCID,Qi Weiqing2,Lu Dekai1,Lyu Yi2,Liao Aiming3,Wang Guoqing3,Ren Liliang1,Zhang Jianyun3

Affiliation:

1. National Key Laboratory of Water Disaster Prevention Hohai University Nanjing China

2. College of Hydrology and Water Resources Hohai University Nanjing China

3. Yangtze Institute for Conservation and Development Hohai University Nanjing China

Abstract

AbstractThe streamflow on the Tibetan Plateau (TP) plays an important role in the water supply of Asia's main river basins. To enhance understanding of hydrologic cycle under the pronounced warming over the TP, this study comprehensively investigates the streamflow changes at the upstream of six major rivers (Yellow River, Yalong River, Jinsha River, Lancang River, Nu River, and Yarlung Zangbo River) originating from the TP, and then diagnoses their possible causes by analysing the impacts of climate variability and human activities. Results indicate that these six major rivers studied have generally insignificant increasing trends in annual streamflow during the last half century, except for two stations. The significant increase appears at the Tuotuohe station in the headwater area of Jinsha River, while the dramatic decrease occurs at the Yunjinghong station in the downstream of Lancang River. In terms of climate factors, the six river basins show a distinct warming trend, along with a noticeable increase in precipitation over the central and northern regions. Pan evaporation, wind speed, sunshine duration, and relative humidity have been found to gradually decrease in most areas. As for the Tuotuohe station, both warming‐induced meltwater and increasing precipitation might jointly contribute to the increasing streamflow. But for the Yunjinghong station, the results simulated by the Variable Infiltration Capacity (VIC) model indicate that human activities, especially for the impoundment processes of Xiaowan and Nuozhadu dams, significantly influenced the streamflow, contributing to approximately 69% of the streamflow reduction during 2009–2013. In the context of accelerated global warming, greater attention should be paid to hydrometeorological changes on the TP to offer further insights for the water resources management of the ‘Asian Water Tower’.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Water Science and Technology

Reference90 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3