Affiliation:
1. Instituut‐Lorentz Universiteit Leiden P.O. Box 9506 Leiden 2300 RA The Netherlands
2. Max Planck Institute for the Physics of Complex Systems Nöthnitzer Strasse 38 01187 Dresden Germany
3. Faculty of Physics University of Warsaw ul. Pasteura 5 Warszawa 02–093 Poland
Abstract
AbstractMethods to discretize the Hamiltonian of a topological insulator or topological superconductor, without giving up on the topological protection of the massless excitations (respectively, Dirac fermions or Majorana fermions) are reviewed. The method of tangent fermions, pioneered by Richard Stacey, is singled out as being uniquely suited for this purpose. Tangent fermions propagate on a dimensional space‐time lattice with a tangent dispersion: in dimensionless units. They avoid the fermion doubling lattice artefact that will spoil the topological protection, while preserving the fundamental symmetries of the Dirac Hamiltonian. Although the discretized Hamiltonian is nonlocal, as required by the fermion‐doubling no‐go theorem, it is possible to transform the wave equation into a generalized eigenproblem that is local in space and time. Applications that are discussed include Klein tunneling of Dirac fermions through a potential barrier, the absence of localization by disorder, the anomalous quantum Hall effect in a magnetic field, and the thermal metal of Majorana fermions.
Funder
H2020 European Research Council
Horizon 2020 Framework Programme
Subject
General Physics and Astronomy
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献