Photonic Spin Hall Effect as a Highly Sensitive Refractive Index Sensing Platform for Glucose

Author:

Dong Peng1,Xiang Yinjie2,Cheng Jie2ORCID

Affiliation:

1. School of Electrical Engineering Research Center of Intelligent Sensor and Network Engineering Technology of Jiangsu Province Nanjing Vocational University of Industry Technology Nanjing Jiangsu 210023 China

2. School of Science Jiangsu Province Engineering Research Center of Low Dimensional Physics and New Energy Nanjing University of Posts and Telecommunications Nanjing Jiangsu 210023 China

Abstract

AbstractThis study presents an innovative refractive index (RI) sensor that measures glucose concentration by utilizing the photonic spin Hall effect (SHE) in a resonant optical tunneling effect (ROTE) structure. The ROTE structure consists of three InP layers with the high RI and two analyte layers (with a high‐low‐high‐low‐high RI distribution), in which glucose solution samples with the low RI are injected. By subjecting the InP layers to external bias‐assisted light, the photonic SHE can be flexibly manipulated, enabling the modulation of the sensing performance accordingly. It is found that the transverse shift of photonic SHE presents a large variation in response to the tiny change in glucose concentrations. By optimizing the parameters (i.e., intensity or wavelength) of bias light, the sensitivity of this sensor can reach as high as 735.7 µm RIU−1. Compared to traditional glucose sensors, this original work implements the novel photonic SHE with the superior sensing performance. Therefore, the proposed design shows promising potential for biomedical applications, such as medical diagnoses and drug discovery.

Funder

National Natural Science Foundation of China

Qinglan Project of Jiangsu Province of China

Publisher

Wiley

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3