Affiliation:
1. School of Mathematics and Physics University of Science and Technology Beijing Beijing 100083 China
2. College of Physics and Materials Science Tianjin Normal University Tianjin 300387 China
Abstract
AbstractQuantum gates are the essential block for quantum computers. High‐dimensional quantum gates exhibit remarkable advantages over their 2D counterparts for some quantum information processing tasks. Here, a family of entanglement‐based optical controlled‐SWAP gates on is presented. With the hybrid encoding, the control qubits and target qudits are encoded in photonic polarization and spatial degrees of freedom, respectively. The circuit is constructed using only () linear optics, beating an earlier result of 14 linear optics with . The circuit depth five is much lower than an earlier result of 11 with . Besides, the fidelity of the presented circuit can reach 99.4%, and it is higher than the previous counterpart with . The scheme is constructed in a deterministic way without any borrowed ancillary photons or measurement‐induced nonlinearities. Moreover, the approach allows .
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jilin Province