Limits on Dark Photons, Scalars, and Axion‐Electromagnetodynamics with the ORGAN Experiment

Author:

McAllister Ben T.12ORCID,Quiskamp Aaron1,O'Hare Ciaran A. J.3,Altin Paul4,Ivanov Eugene N.1,Goryachev Maxim1,Tobar Michael E.1

Affiliation:

1. QDM Laboratory Department of Physics University of Western Australia 35 Stirling Highway Crawley WA 6009 Australia

2. Center for Astrophysics and Supercomputing Swinburne University of Technology John St Hawthorn VIC 3122 Australia

3. School of Physics Physics Road The University of Sydney Camperdown Sydney NSW 2006 Australia

4. ARC Center of Excellence For Engineered Quantum Systems The Australian National University Canberra ACT 2600 Australia

Abstract

AbstractAxions are a well‐motivated dark matter candidate, with a host of experiments around the world searching for direct evidence of their existence. The ORGAN Experiment is a type of axion detector known as an axion haloscope, which takes the form of a cryogenic resonant cavity embedded in a strong magnetic field. ORGAN recently completed Phase 1a, a scan for axions ≈65 µeV, and placed the most stringent limits to date on the dark matter axion–photon coupling in this region, . It has been shown that axion haloscopes such as ORGAN are automatically sensitive to other kinds of dark matter candidates, such as dark photons, scalar field/dilaton dark matter, and exotic axion–electromagnetic couplings motivated by quantum electromagnetodynamics. The exclusion limits placed on these various dark matter candidates are computed by ORGAN 1a, and sensitivity for some future ORGAN phases are projected. In particular, the dark photon limits are the most sensitive to date in some regions of the parameter space.

Funder

Australian Research Council

Forrest Research Foundation

Publisher

Wiley

Subject

General Physics and Astronomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3