Power Law f(Q)$f(Q)$ Cosmology with Bulk Viscous Fluid

Author:

Rana Dheeraj Singh1,Solanki Raja1,Sahoo P. K.1ORCID

Affiliation:

1. Department of Mathematics Birla Institute of Technology and Science‐Pilani Hyderabad Campus Hyderabad 500078 India

Abstract

AbstractIn this work, a power law model is explored, specifically, , along with viscous matter fluid having transport coefficient . The corresponding analytical solution is derived and then confronted with recent cosmic data. The Markov Chain Monte Carlo (MCMC) sampling technique is utilized to estimate the mean value of arbitrary parameters, by incorporating Cosmic Chronometers and recently published Pantheon+Analysis samples. In addition, some cosmological parameters are reconstructed by resampling the chains obtained by emcee, incorporating 6000 samples. It is found that the matter‐energy density depicts the expected positive behavior, whereas the effective pressure indicates the negative behavior that is leading the accelerating expansion, which is further predicted in the effective EoS parameter. Further, the asymptotic nature of the assumed model is investigated by invoking phase‐space analysis. It is concluded that the assumed viscous model successfully predicts an evolution of the universe from decelerated epoch to stable accelerated de‐Sitter epoch.

Funder

University Grants Commission

Science and Engineering Research Board

Publisher

Wiley

Reference56 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3