Second Harmonic Generation in 1D Nonlinear Plasma Photonic Crystals

Author:

Yang Cheng1,Guo Chu‐Ming1,Peng Chuan1,Zhang Hai‐Feng1ORCID

Affiliation:

1. College of Electronic and Optical Engineering and the College of Flexible Electronics (Future Technology) Nanjing University of Posts and Telecommunications (NJUPT) Nanjing 210023 P. R. China

Abstract

AbstractIn this paper, a 1D nonlinear plasma photonic crystal (NPPC) structure composed of polarized ferroelectric crystals and nonlinear plasma periodic alternation is proposed. The transfer matrix method is employed to analyze the second harmonic generation (SHG) problem of this structure. In the designed NPPCs, the fundamental wave (FW) operates in the gigahertz (GHz) band and the nonlinear plasma is controlled by an external high‐intensity control wave (CW). Numerical simulations are performed to investigate the effects of different incident angles and external CW intensities on the total conversion efficiency (T‐con) of the second harmonic wave (SHW). Additionally, the internal electric field distribution and incident light intensity within the nonlinear structure are analyzed. The importance of the relationship between the FW frequency and photonic band gap (PBG) in enhancing SHG is summarized. The results demonstrate that the optimal structure can be obtained by changing the structural parameters, such that the FW and SHW are tuned to the edge of the PBG. At this point, the electromagnetic field density is large, the group velocity is small, the local field is enhanced, and the nonlinear optical interaction is increased, resulting in a significant increase in the T‐con of the SHW.

Publisher

Wiley

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3