Control of Correlation Using Confinement in Case of Quantum System

Author:

Kumar Kirtee12,Prasad Vinod3ORCID

Affiliation:

1. Department of Physics and Astrophysics University of Delhi Delhi 110007 India

2. Department of Physics Kirori Mal College University of Delhi Delhi 110007 India

3. Department of Physics Swami Shraddhanand College University of Delhi Delhi 110036 India

Abstract

AbstractThis article investigates the behavior of a Moshinsky atom in a 1D harmonic trap. Focus is given on the theoretical foundations of confinement and its impact on the correlation between particles in the Moshinsky atom. The investigation begins by illustrating the (de)localization of the probability density function using Shannon entropy. The basics of correlation and interpretation of correlation using tools such as mutual information and statistical correlation coefficients and how these can be quantified are discussed. Then the concept of confinement is explored. The impact of interaction strength and confinement on Shannon entropy, statistical correlation coefficients, and mutual information is investigated. How interaction strength and confinement can be used to induce correlations between previously uncorrelated particles, as well as how they can be used to suppress correlations between previously correlated particles is discussed. Their implications for quantum information processing and quantum simulation are discussed. In conclusion, confinement is a powerful tool for controlling correlations in quantum systems, and its impact on correlation can be understood through theoretical models. The importance of experimental studies in this field, which provide insights into the behavior of quantum systems under confinement and pave the way for future applications in quantum technology is also emphasized.

Publisher

Wiley

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3