Reservoir Engineering Strong Magnomechanical Entanglement via Dual‐Mode Cooling

Author:

Liu Zhi‐Qiang1,Liu Yun1,Tan Lei12ORCID,Liu Wu‐Ming3

Affiliation:

1. Lanzhou Center for Theoretical Physics Key Laboratory of Theoretical Physics of Gansu Province Lanzhou University Lanzhou Gansu 730000 China

2. Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education Lanzhou University Lanzhou 730000 China

3. Beijing National Laboratory for Condensed Matter Physics Institute of Physics, Chinese Academy of Sciences Beijing 100190 China

Abstract

AbstractA hybrid cavity magnomechanical system to transfer the bipartite entanglements and achieve the strong microwave photon–phonon entanglement based on the reservoir engineering approach is constructed. The magnon mode is coupled to the microwave cavity mode via magnetic dipole interaction and to the phonon mode via magnetostrictive force (optomechanical‐like). It is shown that the initial magnon‐phonon entanglement can be transferred to the photon‐phonon subspace in the case of these two interactions cooperating. In the reservoir‐engineering parameter regime, the initial entanglement is directionally transferred to the photon‐phonon subsystem, so a strong bipartite entanglement in which the magnon mode acts as the cold reservoir to effectively cool the Bogoliubov mode delocalized over the cavity and the mechanical deformation mode is obtained. Moreover, dual‐mode cooling is realized by engineering the dissipation of photon and phonon modes within the target mode, which allows entanglement to be further enhanced. The results indicate that the steady‐state entanglement is robust against temperature. The dual‐mode cooling reservoir engineering scheme can potentially be extended to other three‐mode quantum systems.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3