A First Application of Machine and Deep Learning for Background Rejection in the ALPS II TES Detector

Author:

Meyer Manuel12,Isleif Katharina34,Januschek Friederike3,Lindner Axel3,Othman Gulden1,Rubiera Gimeno José Alejandro3,Schwemmbauer Christina3,Schott Matthias5,Shah Rikhav5,

Affiliation:

1. Institut für Experimentalphysik Universität Hamburg Luruper Chaussee 149 22761 Hamburg Germany

2. CP3‐Origins University of Southern Denmark Campusvej 55 5230 Odense M Denmark

3. Deutsches Elektronen‐Synchrotron DESY Notkestr. 85 22607 Hamburg Germany

4. Helmut‐Schmidt‐University Holstenhofweg 85 22043 Hamburg Germany

5. Institute of Physics Johannes Gutenberg‐Universität Mainz Staudingerweg 7 55128 Mainz Germany

Abstract

AbstractAxions and axion‐like particles are hypothetical particles predicted in extensions of the standard model and are promising cold dark matter candidates. The Any Light Particle Search (ALPS II) experiment is a light‐shining‐through‐the‐wall experiment that aims to produce these particles from a strong light source and magnetic field and subsequently detect them through a reconversion into photons. With an expected rate ≈1 photon per day, a sensitive detection scheme needs to be employed and characterized. One foreseen detector is based on a transition edge sensor (TES). Here, the machine and deep learning algorithms for the rejection of background events recorded with the TES are investigated. A first application of convolutional neural networks to classify time series data measured with the TES is also presented.

Funder

H2020 European Research Council

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3