Artificial intelligence for dementia—Applied models and digital health

Author:

Lyall Donald M.1,Kormilitzin Andrey2,Lancaster Claire3,Sousa Jose45,Petermann‐Rocha Fanny16,Buckley Christopher7,Harshfield Eric L.8,Iveson Matthew H.9,Madan Christopher R.10,McArdle Ríona11,Newby Danielle2,Orgeta Vasiliki12,Tang Eugene11,Tamburin Stefano13,Thakur Lokendra S.14,Lourida Ilianna15,Llewellyn David J.1516,Ranson Janice M.15,

Affiliation:

1. School of Health and Wellbeing College of Medical and Veterinary Sciences, University of Glasgow Glasgow UK

2. Department of Psychiatry University of Oxford Oxford UK

3. School of Psychology University of Sussex Brighton UK

4. Personal Health Data Science SANO‐Centre for Computational Personalised Medicine Krakow Poland

5. Faculty of Medicine Health and Life Science, Queen's University Belfast Belfast UK

6. Centro de Investigación Biomédica Facultad de Medicina, Universidad Diego Portales Santiago Chile

7. Department of Sport Exercise and Rehabilitation, Northumbria University Newcastle upon Tyne UK

8. Stroke Research Group, Department of Clinical Neurosciences University of Cambridge Cambridge UK

9. Centre for Clinical Brain Sciences University of Edinburgh Edinburgh UK

10. School of Psychology University of Nottingham Nottingham UK

11. Translational and Clinical Research Institute Faculty of Medical Sciences, Newcastle University Newcastle upon Tyne UK

12. Division of Psychiatry University College London London UK

13. Department of Neurosciences Biomedicine and Movement Sciences, University of Verona Verona Italy

14. Broad Institute of MIT and Harvard Cambridge Massachusetts USA

15. University of Exeter Medical School Exeter UK

16. Alan Turing Institute London UK

Abstract

AbstractINTRODUCTIONThe use of applied modeling in dementia risk prediction, diagnosis, and prognostics will have substantial public health benefits, particularly as “deep phenotyping” cohorts with multi‐omics health data become available.METHODSThis narrative review synthesizes understanding of applied models and digital health technologies, in terms of dementia risk prediction, diagnostic discrimination, prognosis, and progression. Machine learning approaches show evidence of improved predictive power compared to standard clinical risk scores in predicting dementia, and the potential to decompose large numbers of variables into relatively few critical predictors.RESULTSThis review focuses on key areas of emerging promise including: emphasis on easier, more transparent data sharing and cohort access; integration of high‐throughput biomarker and electronic health record data into modeling; and progressing beyond the primary prediction of dementia to secondary outcomes, for example, treatment response and physical health.DISCUSSIONSuch approaches will benefit also from improvements in remote data measurement, whether cognitive (e.g., online), or naturalistic (e.g., watch‐based accelerometry).

Funder

Medical Research Council

Publisher

Wiley

Subject

Psychiatry and Mental health,Cellular and Molecular Neuroscience,Geriatrics and Gerontology,Neurology (clinical),Developmental Neuroscience,Health Policy,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3