Experiment‐based statistical distribution of buckling loads of cylindrical shells

Author:

Li Zheng1,Pasternak Hartmut2,Geißler Karsten1

Affiliation:

1. Technical University of Berlin Berlin Germany

2. Brandenburg University of Technology Cottbus Germany

Abstract

AbstractA silo structure is usually constructed in the form of a cylindrical steel shell. It has the advantages of being lightweight, having a short construction period, and possessing a large storage space. It has been widely used in many fields of industry. Thin‐walled cylindrical shells often exhibit buckling failure and the experimental buckling load is usually lower than calculation results from classical theory and simulation without geometrical imperfection. Besides, test results with carefully conducted similar specimens still have substantial scatter due to imperfection sensitivity. The nonlinear analysis with FEM can obtain a high‐precision result comparing the experiment if the geometric parameters of the shell are fully known. However, this is almost impossible in practical engineering. The initial geometric imperfections and shell thickness of cylindrical shells are complex and random properties. Theoretically, these geometric imperfections can be described using a random field. This paper presents the experimental investigation of buckling analysis of cylindrical shells under axial compression considering the randomness of geometric imperfections and thickness. A total of 12 cylindrical shell specimens were fabricated and tested. Based on the test results, the optimal statistical distribution is obtained by the maximum entropy fitting method and the obtained results were compared with geometric imperfections based on laser scan measurements.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3