Imaged capillary isoelectric focusing employing fluorocarbon and methylcellulose coated fused silica capillary for characterization of charge heterogeneity of protein biopharmaceuticals

Author:

Kwok Teresa1,Chan She Lin1,Shi Jessica2,Zhou Mike1,Schaefer Anna1,Bo Tao1,Li Victor1,Huang Tiemin1,Chen Tong1ORCID

Affiliation:

1. Advanced Electrophoresis Solutions Ltd. Cambridge Canada

2. Faculty of Science McGill University Montreal Canada

Abstract

AbstractIdentifying and characterizing charge heterogeneity is essential for the successful development and production of biopharmaceuticals. Imaged capillary isoelectric focusing technology based on isoelectric point differentiation has been becoming the gold standard of quality and manufactory process control in the biopharmaceutical industry due to its high‐resolution characterization of protein charge variants with high throughput. Fluorocarbon‐coated capillaries are widely used in the imaged capillary isoelectric focusing to suppress the electroosmotic flow and minimize the protein adsorption onto the fused silica capillary inner surface. Additionally, polymers such as methylcellulose are usually added to the sample solution to serve as a dynamic capillary coating that improves the peak shape and resolution during the imaged capillary isoelectric focusing separation, especially for complex proteins. However, the addition of methylcellulose tends to result in tedious operation, “spike peaks” from bubble generation, and frequent capillary blockage during the imaged capillary isoelectric focusing separation. In addition, methylcellulose is not compatible with mass spectrometry and easily produces the contamination of mass spectrometry ion source when carrying out imaged capillary isoelectric focusing—mass spectrometry direct coupling. Recently, a new imaged capillary isoelectric focusing method was developed employing a methylcellulose‐coated capillary cartridge, to avoid the addition of methylcellulose which is then present throughout the whole analysis. When applied to protein drug characterization the established imaged capillary isoelectric focusing method demonstrated high repeatability, stable coatings, outstanding separation efficiency, and excellent isoelectric point differentiation. In addition, we compared imaged capillary isoelectric focusing separation using the methylcellulose‐coated capillary with that utilizing the routinely coated capillary such as fluorocarbon, illustrating that methylcellulose coating provided consistent results and could be seamlessly integrated into an existing drug discovery process. Finally, the methylcellulose‐coated fused silica capillary was applied to imaged capillary isoelectric focusing—mass spectrometry for characterizing protein charge variants allowing reliable identification of mass spectrometry after imaged capillary isoelectric focusing separation. This can greatly simplify the operation steps and prevent the contamination of mass spectrometry ion source that often results from using routinely coated capillaries ultimately making this an essential innovation of imaged capillary isoelectric focusing—mass spectrometry that greatly improves the imaged capillary isoelectric focusing compatibility with mass spectrometry.

Publisher

Wiley

Subject

Filtration and Separation,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3