Magnetic iron‐oxide coffee husk and khat waste biochar nanocomposites for removal of methylene blue from aqueous solution

Author:

Kochito Jemere1ORCID,Gure Abera1ORCID,Beyene Tamene Tadesse1,Femi Olu Emmanuel2

Affiliation:

1. Department of Chemistry College of Natural Sciences Jimma University Jimma Ethiopia

2. Faculty of Materials Science and Engineering Jimma Institute of Technology, Jimma University Ethiopia Ethiopia

Abstract

AbstractWastewater from the textile and dyeing industries contains hazardous dyes. This study aims to determine the effectiveness of magnetic biochar nanocomposites synthesized from khat leftovers (KLs) and coffee husks (CHs) in removing methylene blue (MB) from wastewater. Magnetic biochar nanocomposites were synthesized by pretreating 25 g of biomass with a 12.5 mmol mixture of FeS and FeCl3 at a 1:1 molar ratio, followed by pyrolyzing at 300°C for 1 h. The resulting products were analyzed using X‐ray diffraction, Fourier transform infrared, scanning electron microscope, and Brunauer‐Emmett‐Teller. The results showed that the adsorbents are amorphous, and the activated biochars, are more porous and contain various functional groups such as C‐O, C = C, O‐H, C‐H, and Fe‐O. When 0.2 g of pristine biochars of CH and KL were applied to 20 mL aqueous solutions containing 20 mg/L of MB at pH 7.5 and 25°C, they removed 44.73% and 75.26% of MB, respectively. However, the resulting nanocomposites exhibited a maximum removal efficiency of 99.10% and 99.23% with magnetic iron oxide‐CH biochar nanocomposite (Fe3O4‐CHBNC) and magnetic iron oxide‐KL biochar nanocomposite (Fe3O4‐KLBNC), respectively, with maximum adsorption capacities of 51.02 and 78.13 mg/g. The reusability study also showed removal efficiencies of 77.57% and 83.49% up to six‐cycle reuse.

Funder

Jimma University

Publisher

Wiley

Reference67 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3