Preparation of polyvinyl pyrrolidone stationary phase and its application in separation and analysis of flavonoids

Author:

Chen Xin1ORCID,Li Juntao2,Gu Mengting1,Miao Yiyuan1,Ke Yanxiong1ORCID,Zheng Xiangwei2,Xu Jian3

Affiliation:

1. Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy East China University of Science and Technology Shanghai China

2. Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine, Ministry of Education, Innovation Research Institute of Traditional Chinese Medicine Shanghai University of Traditional Chinese Medicine Shanghai China

3. Hubei Provincial Key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute Jing Brand Co., Ltd. Daye Hubei China

Abstract

AbstractPolyvinylpyrrolidone (PVP) is known as a polymer with special adsorption properties for polyphenolic compounds. In this paper, chemical‐bonded stationary phase (PVP@Silica) was prepared and applied to the separation of flavonoids. System constants determined by linear solvation energy relationships with methanol–water mixtures as the mobile show that the column can provide stronger hydrogen bonding and π–π interaction than C18 column. Under reversed‐phase conditions, traditional flavonoids have much longer retention on PVP@Silica than on C18 column with methanol–water mobile phase due to multimodal retention mechanism, including hydrogen bonding and π–π interaction. In addition, a U‐shaped retention curve was observed in acetonitrile–water mobile phase because of the enhanced hydrogen bonding under the high proportion of acetonitrile. The selectivity to polyhydroxy structure gives the stationary phase unique separation ability for flavonoids. The separation orthogonality was further investigated by a sample set containing 33 flavonoids with different substitution structures. The (RP‐PVP@Silica)‐(RP‐C18) system exhibited 60% orthogonality metric (OM) for these flavonoids with methanol–water mobile phase. A high OM of 63.5% was achieved in (RP‐PVP@Silica)‐(HILIC‐PVP@Silica) system. Finally, PVP@Silica was applied to the purification of total flavonoids in Ginkgo biloba extract (GBE). The offline (RP‐PVP@Silica)‐(RP‐C18) two‐dimensional separation system was used for the analysis of flavonoids in GBE.

Funder

Natural Science Foundation of Hubei Province

Publisher

Wiley

Subject

Filtration and Separation,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3