Two genotoxic impurities of sulfonate esters in Posaconazole: Synthesis, method validation and mechanism of action

Author:

Li Fangzhen1ORCID,Liu Weifeng1,Zheng Kangle1,Luo Hengzhen1

Affiliation:

1. Drug Research and Development Center Jiangxi Kerui Pharmaceutical Co. Ltd. Ganzhou P. R. China

Abstract

AbstractSulfonate esters are a class of organic impurities that includes highly potent mutagenic substances that typically need to be controlled down to a low ppm level in pharmaceutical development. In this work, two genotoxic impurities of sulfonate esters in Posaconazole, for example, ((3S,5R)‐5‐((1H‐1,2,4‐triazol‐1‐yl)methyl)‐5‐(2,4‐difluorophenyl)tetrahydrofuran‐3‐yl)methyl‐4‐methylbenzenesulfonate and (2S,3S)‐3‐ (4‐(4‐(4‐(4‐(((3R,5R)‐5‐((1H‐1,2,4‐triazol‐1‐yl)methyl)‐5‐(2,4‐difluorophenyl)tetrahydrofuran‐3‐yl)methoxy)phenyl)piperazin‐1‐yl)phenyl)‐5‐oxo‐4,5‐dihydro‐1H‐1,2,4‐triazol‐1‐yl)pentan‐2‐yl‐4‐methylbenzenesulfonate, were synthesized and characterized. The genotoxicity which was evaluated by two (quantitative) structure‐activity relationships prediction methodologies showed positive. Furthermore, a novel high‐performance liquid chromatography‐tandem mass spectrometry limit test method for detecting these two impurities in Posaconazole has been established and validated. The chromatographic separation of analytes was conducted on an ACQUITY BEH C18 column, and performed with 0.05% methanoic acid‐water and 0.05% methanoic acid‐acetonitrile as mobile phases A and B, respectively. Six batches of commercial‐scale Posaconazole samples were detected by the validated method and the results were in accordance with the Food and Drug Administration acceptance criteria for the genotoxic impurities in drug substances. Finally, a tentative mechanism for these two impurities was proposed, they are generally accepted to undergo an SN2‐type reaction, resulting in 7‐methylguanine as the predominant adduct in double‐stranded DNA.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3