“Through the looking‐glass …” An empirical study on blob infrastructure blueprints in the Topology and Orchestration Specification for Cloud Applications

Author:

Dalla Palma Stefano12ORCID,van Asseldonk Chiel12,Catolino Gemma12,Di Nucci Dario3,Palomba Fabio3ORCID,Tamburri Damian A.14

Affiliation:

1. Tilburg University Tilburg The Netherlands

2. Jheronimus Academy of Data Science 's‐Hertogenbosch The Netherlands

3. Software Engineering (SeSa) Lab University of Salerno Salerno Italy

4. Eindhoven University of Technology Eindhoven The Netherlands

Abstract

AbstractInfrastructure‐as‐code (IaC) helps keep up with the demand for fast, reliable, high‐quality services by provisioning and managing infrastructures through configuration files. Those files ensure efficient and repeatable routines for system provisioning, but they might be affected by code smells that negatively affect quality and code maintenance. Research has broadly studied code smells for traditional source code development; however, none explored them in the “Topology and Orchestration Specification for Cloud Applications” (TOSCA), the technology‐agnostic OASIS standard for IaC. In this paper, we investigate a prominent traditional implementation code smell potentially applicable to TOSCA: Large Class, or “Blob Blueprint” in IaC terms. We compare metrics‐based and unsupervised learning‐based detectors on a large dataset of manually validated observations related to Blob Blueprints. We provide insights on code metrics that corroborate previous findings and empirically show that metrics‐based detectors perform highly in detecting Blob Blueprints. We deem our results put forward a new research path toward dealing with this problem, for example, in the scope of fully automated service pipelines.

Funder

European Commission

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Wiley

Subject

Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Systematic Analysis of Infrastructure as Code Technologies;Gazi University Journal of Science Part A: Engineering and Innovation;2023-12-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3