FFLUX molecular simulations driven by atomic Gaussian process regression models

Author:

Manchev Yulian T.1,Popelier Paul L. A.1

Affiliation:

1. Department of Chemistry The University of Manchester Manchester Great Britain

Abstract

AbstractMachine learning (ML) force fields are revolutionizing molecular dynamics (MD) simulations as they bypass the computational cost associated with ab initio methods but do not sacrifice accuracy in the process. In this work, the GPyTorch library is used to create Gaussian process regression (GPR) models that are interfaced with the next‐generation ML force field FFLUX. These models predict atomic properties of different molecular configurations that appear in a progressing MD simulation. An improved kernel function is utilized to correctly capture the periodicity of the input descriptors. The first FFLUX molecular simulations of ammonia, methanol, and malondialdehyde with the updated kernel are performed. Geometry optimizations with the GPR models result in highly accurate final structures with a maximum root‐mean‐squared deviation of 0.064 Å and sub‐kJ mol−1 total energy predictions. Additionally, the models are tested in 298 K MD simulations with FFLUX to benchmark for robustness. The resulting energy and force predictions throughout the simulation are in excellent agreement with ab initio data for ammonia and methanol but decrease in quality for malondialdehyde due to the increased system complexity. GPR model improvements are discussed, which will ensure the future scalability to larger systems.

Funder

Biotechnology and Biological Sciences Research Council

Engineering and Physical Sciences Research Council

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3