Affiliation:
1. Department of Chemistry The University of Manchester Manchester Great Britain
Abstract
AbstractMachine learning (ML) force fields are revolutionizing molecular dynamics (MD) simulations as they bypass the computational cost associated with ab initio methods but do not sacrifice accuracy in the process. In this work, the GPyTorch library is used to create Gaussian process regression (GPR) models that are interfaced with the next‐generation ML force field FFLUX. These models predict atomic properties of different molecular configurations that appear in a progressing MD simulation. An improved kernel function is utilized to correctly capture the periodicity of the input descriptors. The first FFLUX molecular simulations of ammonia, methanol, and malondialdehyde with the updated kernel are performed. Geometry optimizations with the GPR models result in highly accurate final structures with a maximum root‐mean‐squared deviation of 0.064 Å and sub‐kJ mol−1 total energy predictions. Additionally, the models are tested in 298 K MD simulations with FFLUX to benchmark for robustness. The resulting energy and force predictions throughout the simulation are in excellent agreement with ab initio data for ammonia and methanol but decrease in quality for malondialdehyde due to the increased system complexity. GPR model improvements are discussed, which will ensure the future scalability to larger systems.
Funder
Biotechnology and Biological Sciences Research Council
Engineering and Physical Sciences Research Council
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献