Reinforcement learning for in silico determination of adsorbate—substrate structures

Author:

Lourenço Maicon Pierre1ORCID,Hostaš Jiří23,Bellinger Colin3,Tchagang Alain3ORCID,Salahub Dennis R.2

Affiliation:

1. Departamento de Química e Física—Centro de Ciências Exatas Naturais e da Saúde—CCENS—Universidade Federal do Espírito Santo Alegre Brasil

2. Department of Chemistry, Department of Physics and Astronomy CMS Centre for Molecular Simulation, IQST Institute for Quantum Science and Technology, Quantum Alberta, University of Calgary Calgary Alberta Canada

3. Digital Technologies Research Centre National Research Council of Canada Ottawa Ontario Canada

Abstract

AbstractReinforcement learning (RL) methods have helped to define the state of the art in the field of modern artificial intelligence, mostly after the breakthrough involving AlphaGo and the discovery of novel algorithms. In this work, we present a RL method, based on Q‐learning, for the structural determination of adsorbate@substrate models in silico, where the minimization of the energy landscape resulting from adsorbate interactions with a substrate is made by actions on states (translations and rotations) chosen from an agent's policy. The proposed RL method is implemented in an early version of the reinforcement learning software for materials design and discovery (RLMaterial), developed in Python3.x. RLMaterial interfaces with deMon2k, DFTB+, ORCA, and Quantum Espresso codes to compute the adsorbate@substrate energies. The RL method was applied for the structural determination of (i) the amino acid glycine and (ii) 2‐amino‐acetaldehyde, both interacting with a boron nitride (BN) monolayer, (iii) host‐guest interactions between phenylboronic acid and β‐cyclodextrin and (iv) ammonia on naphthalene. Density functional tight binding calculations were used to build the complex search surfaces with a reasonably low computational cost for systems (i)–(iii) and DFT for system (iv). Artificial neural network and gradient boosting regression techniques were employed to approximate the Q‐matrix or Q‐table for better decision making (policy) on next actions. Finally, we have developed a transfer‐learning protocol within the RL framework that allows learning from one chemical system and transferring the experience to another, as well as from different DFT or DFTB levels.

Funder

Fundação de Amparo à Pesquisa e Inovação do Espírito Santo

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3