Facial nerve axotomy induces morphological changes in hippocampal pyramidal neurons

Author:

Bolívar‐Baquero Oscar1,Troncoso Julieta12ORCID

Affiliation:

1. Behavioral Neurophysiology Laboratory,  Physiological Sciences Department, School of Medicine Universidad Nacional de Colombia Bogotá Colombia

2. Biology Department School of Sciences Universidad Nacional de Colombia Bogotá Colombia

Abstract

AbstractFacial nerve injury in rats have been widely used to study functional and structural changes that occur in the injured motoneurons and other central nervous system structures related with sensorimotor processing. A decrease in long‐term potentiation of hippocampal CA3‐to‐CA1 commissural synapse has recently been reported related to this peripheral injury. Additionally, it has been found increased corticosterone plasmatic levels, impairment in spatial memory consolidation, and hippocampal microglial activation in animals with facial nerve axotomy. In this work, we analyzed the neuronal morphology of hippocampal CA1 and CA3 pyramidal neurons in animals with either reversible or irreversible facial nerve injury. For this purpose, brain tissues of injured animals sacrificed at different postlesion times, were stained with the Golgi‐Cox method and compared with control brains. It was found that both reversible and irreversible facial nerve injury‐induced significant decreases in dendritic tree complexity, dendritic length, branch points, and spine density of hippocampal neurons. However, such changes’ timing varied according to hippocampal area (CA1 vs. CA3), dendritic area (apical vs. basal), and lesion type (reversible vs. irreversible). In general, the observed changes were transient when animals had the possibility of motor recovery (reversible injury), but perdurable if the recovery from the lesion was impeded (irreversible injury). CA1 apical and CA3 basal dendritic tree morphology were more sensible to irreversible injury. It is concluded that facial nerve injury induced significant changes in hippocampal CA1 and CA3 pyramidal neurons morphology, which could be related to LTP impairments and microglial activation in the hippocampal formation, previously described.

Publisher

Wiley

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3