Fabrication of liquid crystal Fe3O4 composites and their magnetorheological properties

Author:

Wang Keyi1ORCID,Chang Xiaolong1,Diao Yi1,Li Mingda1,Liu Fan1,Meng Fanbao1

Affiliation:

1. College of Sciences Northeastern University Shenyang China

Abstract

AbstractSome supramolecular polyacrylate‐based liquid crystal polymers (PLCPs) were prepared by polyacrylic acid, a liquid crystal monomer and 3,5‐pyridinedicarboxylic acid. Series of magnetic liquid crystal particles (Fe3O4@PLCPs) with core‐shell structure were prepared by modifying surface of magnetic nanoparticles Fe3O4 by the PLCPs. The Fe3O4@PLCPs showed a saturation magnetization strength above 51.17 emu/g, which is similar to pure magnetic Fe3O4, indicating good magnetism and magnetic field dependence. Series of magnetorheological fluids were fabricated by Fe3O4@PLCPs (using as dispersed phase) and silicone oil (using as carrier liquid). The effects of mesogen, magnetic particle, and the polymer matrix on magnetorheological performance and settling stability were investigated. The magnetorheological fluid based on 10% Fe3O4@PLCP‐1 showed the best performance at an applied magnetic field of 100 mT in this study. Furthermore, the magnetorheological fluids showed excellent settling stability because the density of Fe3O4@PLCPs was lower than that of Fe3O4. The Fe3O4@PLCPs‐based fluids presented certain application potential in the field of magnetic fluid due to the excellent magnetorheological effect and settling stability.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3