Neural foveated super‐resolution for real‐time VR rendering

Author:

Ye Jiannan1ORCID,Meng Xiaoxu2,Guo Daiyun1,Shang Cheng1,Mao Haotian1,Yang Xubo1

Affiliation:

1. Digital ART Lab, School of Software Shanghai Jiao Tong University Shanghai China

2. Tencent Games Digital Content Technology Center Tencent California USA

Abstract

AbstractAs virtual reality display technologies advance, resolutions and refresh rates continue to approach human perceptual limits, presenting a challenge for real‐time rendering algorithms. Neural super‐resolution is promising in reducing the computation cost and boosting the visual experience by scaling up low‐resolution renderings. However, the added workload of running neural networks cannot be neglected. In this article, we try to alleviate the burden by exploiting the foveated nature of the human visual system, in a way that we upscale the coarse input in a heterogeneous manner instead of uniform super‐resolution according to the visual acuity decreasing rapidly from the focal point to the periphery. With the help of dynamic and geometric information (i.e., pixel‐wise motion vectors, depth, and camera transformation) available inherently in the real‐time rendering content, we propose a neural accumulator to effectively aggregate the amortizedly rendered low‐resolution visual information from frame to frame recurrently. By leveraging a partition‐assemble scheme, we use a neural super‐resolution module to upsample the low‐resolution image tiles to different qualities according to their perceptual importance and reconstruct the final output adaptively. Perceptually high‐fidelity foveated high‐resolution frames are generated in real‐time, surpassing the quality of other foveated super‐resolution methods.

Funder

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3